Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 293, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513248

RESUMO

BACKGROUND: Aedes aegypti is a vector of high relevance, since it transmits several arboviruses, including dengue, chikungunya and Zika. Studies on vector biology are usually conducted with laboratory strains presenting a divergent genetic composition from field populations. This may impair vector control policies that were based on laboratory observations employing only long maintained laboratory strains. In the present study we characterized a laboratory strain interbreed with Ae. aegypti collected from five different localities in Rio de Janeiro (Aedes Rio), for insecticide resistance (IR), IR mechanisms, fitness and Zika virus infection. METHODS: We compared the recently established Aedes Rio with the laboratory reference strain Rockefeller. Insecticide resistance (deltamethrin, malathion and temephos), activity of metabolic resistance enzymes and kdr mutation frequency were determined. Some life table parameters (longevity, blood-feeding, number and egg viability) and Zika virus susceptibility was also determined. RESULTS: Aedes Rio showed resistance to deltamethrin (resistance ratio, RR50 = 32.6) and temephos (RR50 = 7.0) and elevated activity of glutathione S-transferase (GST) and esterases (α-EST and pNPA-EST), but not acetylcholinesterase (AChE). In total, 92.1% of males genotyped for kdr presented a "resistant" genotype. Weekly blood-fed females from both strains, presented reduced mortality compared to sucrose-fed mosquitoes; however, Aedes Rio blood-fed females did not live as long (mean lifespan: Rockefeller = 70 ± 3.07; Aedes Rio = 53.5 ± 2.16 days). There were no differences between strains in relation to blood-feeding and number of eggs, but Aedes Rio eggs presented reduced viability (mean hatch: Rockefeller = 77.79 ± 1.4%; Aedes Rio = 58.57 ± 1.77%). Zika virus infection (plaque-forming unit, PFU) was similar in both strains (mean PFU ± SE: Aedes Rio: 4.53 × 104 ± 1.14 × 104 PFU; Rockefeller: 2.02 × 104 ± 0.71 × 104 PFU). CONCLUSION: Selected conditions in the field, such as IR mechanisms, may result in pleiotropic effects that interfere in general physiology of the insect. Therefore, it is important to well characterize field populations to be tested in parallel with laboratory reference strains. This practice would improve the significance of laboratory tests for vector control methods.


Assuntos
Aedes/genética , Aptidão Genética , Resistência a Inseticidas/genética , Inseticidas , Aedes/virologia , Animais , Bioensaio , Brasil , Cruzamento , Suscetibilidade a Doenças , Feminino , Genótipo , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/virologia
2.
PLoS Negl Trop Dis ; 12(9): e0006739, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212460

RESUMO

BACKGROUND: Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). In the last year, many studies of triatomine gut microbiota have outlined its potential role in modulating vector competence. However, little is known about the microbiota present in the salivary glands of triatomines. Bacterial composition of salivary glands in selected triatomine species was investigated, as well as environmental influences on the acquisition of bacterial communities. METHODOLOGY/PRINCIPAL FINDINGS: The diversity of the bacterial communities of 30 pairs of salivary glands of triatomines was studied by sequencing of the V1- V3 variable region of the 16S rRNA using the MiSeq platform (Illumina), and bacteria isolated from skin of three vertebrate hosts were identified based on 16S rRNA gene sequence analysis (targeting the V3-V5 region). In a comparative analysis of microbiota in the salivary glands of triatomine species, operational taxonomic units belonging to Arsenophonous appeared as dominant in Triatoma spp (74% of the total 16S coverage), while these units belonging to unclassified Enterobacteriaceae were dominant in the Rhodnius spp (57% of the total 16S coverage). Some intraspecific changes in the composition of the triatomine microbiota were observed, suggesting that some bacteria may have been acquired from the environment. CONCLUSIONS AND SIGNIFICANCE: Our study revealed the presence of a low-diversity microbiota associated to the salivary glands of the evaluated triatomines. The predominant bacteria genera are associated with triatomine genera and the bacteria can be acquired in the environment in which the insects reside. Further studies are necessary to determine the influence of bacterial communities on vector competence.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Insetos Vetores/microbiologia , Glândulas Salivares/microbiologia , Triatominae/microbiologia , Animais , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Pele/microbiologia , Vertebrados
3.
Gene ; 671: 152-160, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859286

RESUMO

High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis.


Assuntos
Aedes/crescimento & desenvolvimento , Proteínas HMGB/química , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Aedes/genética , Aedes/metabolismo , Animais , Núcleo Celular/metabolismo , Dicroísmo Circular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Moleculares , Fosforilação , Estrutura Secundária de Proteína , Distribuição Tecidual
4.
PLoS One ; 7(7): e40192, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802955

RESUMO

The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.


Assuntos
Proteína HMGB1/química , Proteínas de Insetos/química , Aedes , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína HMGB1/isolamento & purificação , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/metabolismo
5.
PLoS One ; 6(8): e23572, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887276

RESUMO

BACKGROUND: The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. PRINCIPAL FINDINGS: We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated. CONCLUSIONS: We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.


Assuntos
Caseína Quinase II/metabolismo , DNA de Protozoário/metabolismo , Proteína HMGB1/metabolismo , Schistosoma mansoni/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citosol/metabolismo , DNA Super-Helicoidal/metabolismo , Ensaios Enzimáticos , Feminino , Granuloma/metabolismo , Proteína HMGB1/química , Proteína HMGB1/genética , Células HeLa , Humanos , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Schistosoma mansoni/citologia , Schistosoma mansoni/ultraestrutura
6.
Mol Biochem Parasitol ; 135(1): 21-30, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15287583

RESUMO

PUR-alpha is a highly conserved protein in eukaryotes belonging to the family of single-stranded DNA-binding proteins. Because PUR-alpha is a multifunctional protein that participates in several regulatory events at the level of gene transcription, it became relevant to investigate the structural features of Schistosoma mansoni PUR-alpha (SmPUR-alpha) that could be correlated to its mode of action. Using deletion constructs on a dot blot assay we mapped the domains of GST-SmPUR-alpha fusion protein involved in the interactions with DNA and RNA. Individually, the N-terminal amino acid residues 1-26 and the C-terminal residues 196-276 of GST-SmPUR-alpha which did not contain nucleic acid-binding domains, did not bind ssDNA or RNA. In contrast, domains encompassing the N-terminal and Class I and C-terminal plus Class I exhibited the highest binding affinity. Seemingly, the latter (GST-SmPUR-alpha 174-276) played a major role in nucleic acid interaction as judged by affinity alone. Other combinations of the deletion constructs displayed either intermediary or no binding affinity to the DNA or RNA probes. Gel shift competition assay showed that GST-SmPUR-alpha bound to ssDNA with higher affinity than to RNA. Because SmPUR-alpha contains two putative phosphorylation sites the protein was tested as a substrate to casein kinase II. GST-SmPUR-alpha could be phosphorylated in vitro by casein kinase II at both, the N- and C-terminus of the protein. The multifunctional nature of SmPUR-alpha was demonstrated by experiments measuring the physical interaction between SmPUR-alpha and the transcription factor SMYB1. This was determined in vivo (yeast two hybrid) and in vitro (GST-pull down). Furthermore, we showed that SmPUR-alpha and SMYB1 acted synergistically to bind preferentially to pyrimidine-rich sequences.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Mapeamento de Interação de Proteínas , Schistosoma mansoni/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Western Blotting , Caseína Quinase II/metabolismo , DNA de Cadeia Simples/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes de Helmintos , Fosforilação , Ligação Proteica , RNA , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...